Unsupervised Feature Learning Improves Prediction of Human Brain Activity in Response to Natural Images
نویسندگان
چکیده
Encoding and decoding in functional magnetic resonance imaging has recently emerged as an area of research to noninvasively characterize the relationship between stimulus features and human brain activity. To overcome the challenge of formalizing what stimulus features should modulate single voxel responses, we introduce a general approach for making directly testable predictions of single voxel responses to statistically adapted representations of ecologically valid stimuli. These representations are learned from unlabeled data without supervision. Our approach is validated using a parsimonious computational model of (i) how early visual cortical representations are adapted to statistical regularities in natural images and (ii) how populations of these representations are pooled by single voxels. This computational model is used to predict single voxel responses to natural images and identify natural images from stimulus-evoked multiple voxel responses. We show that statistically adapted low-level sparse and invariant representations of natural images better span the space of early visual cortical representations and can be more effectively exploited in stimulus identification than hand-designed Gabor wavelets. Our results demonstrate the potential of our approach to better probe unknown cortical representations.
منابع مشابه
Receptive Field Encoding Model for Dynamic Natural Vision
Introduction: Encoding models are used to predict human brain activity in response to sensory stimuli. The purpose of these models is to explain how sensory information represent in the brain. Convolutional neural networks trained by images are capable of encoding magnetic resonance imaging data of humans viewing natural images. Considering the hemodynamic response function, these networks are ...
متن کاملA Nonlinear Grayscale Morphological and Unsupervised method for Human Facial Synthesis Based on an Example Image
Human facial generation of example image is used as a requirement for biometric applications for the purpose of identifying individuals. In this paper, face generation consists of three main steps. In the first step, detection of significant lines and edges of the example image are carried out using nonlinear grayscale morphology. Then, hair areas are identified from the face of sample. The fin...
متن کاملHigh-Dimensional Unsupervised Active Learning Method
In this work, a hierarchical ensemble of projected clustering algorithm for high-dimensional data is proposed. The basic concept of the algorithm is based on the active learning method (ALM) which is a fuzzy learning scheme, inspired by some behavioral features of human brain functionality. High-dimensional unsupervised active learning method (HUALM) is a clustering algorithm which blurs the da...
متن کاملDeep learning for constructing microblog behavior representation to identify social media user's personality
Due to the rapid development of information technology, the Internet has gradually become a part of everyday life. People would like to communicate with friends to share their opinions on social networks. The diverse behavior on socials networks is an ideal reflection of users’ personality traits. Existing behavior analysis methods for personality prediction mostly extract behavior attributes w...
متن کاملProstate cancer radiomics: A study on IMRT response prediction based on MR image features and machine learning approaches
Introduction: To develop different radiomic models based on radiomic features and machine learning methods to predict early intensity modulated radiation therapy (IMRT) response. Materials and Methods: Thirty prostate patients were included. All patients underwent pre ad post-IMRT T2 weighted and apparent diffusing coefficient (ADC) magnetic resonance imagi...
متن کامل